天空彩票app攻略_在线用户注册首页登录平台
天空彩票app客户端下载2023-01-31 16:05

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

天空彩票app攻略

中央农村工作会议系列解读⑤强化种业企业创新能力 切实推进种业振兴行动******

  作者:林青宁、毛世平、王晓君,中国农业科学院农业经济与发展研究所

  近期,习近平总书记在中央农村工作会议上强调“要抓住耕地和种子两个要害”“把种业振兴行动切实抓出成效,把当家品种牢牢攥在自己手里”。作物育种和种子产业发展对于保障我国粮食安全和农业可持续发展意义重大。科技创新是突破前沿育种关键技术,培育战略性新品种的源头,对我国种业发展至关重要。当前,以市场化为导向的育种模式已是种业创新大势所趋,然而我国种业企业科研创新能力相对较弱,严重制约了我国种业创新链的延长。亟须强化种业企业创新能力,切实推进种业振兴行动。

  近年来,我国种业企业在技术创新方面取得了一定进步,表现在三个方面:一是生物育种企业创新平台建设已较为完善。当前国内典型种业企业普遍拥有国家级、省部级重点实验室、博士后工作站等具有行业影响力的技术创新平台,具有较强的技术开发和创新能力。且隆平高科等种业企业已具备了较完善的国外研发体系布局。二是典型生物育种企业科企合作模式初步形成。当前国内典型种业企业不仅与高等院校、科研院所建立了产学研合作关系,还与各类学会建立了长期深入的合作。且首农集团等企业与国外机构在生物技术育种等方面建立了稳定的合作关系。三是典型种业企业创新产出逐渐丰富,在市场准入(审定、登记)品种、发明专利、科技进步奖等方面取得明显进步。“十三五”以来,隆平高科、登海种业等种业企业不断培育出双抗绿色高产的动植物品种。

  当然,在成绩的背后,我国种业企业创新发展仍面临诸多难题:一是知识产权保护体系不完善。种业创新知识产权保护存在制度、认知和执行层面的问题,导致品种侵权行为仍较为普遍。二是种业品种同质化严重。新《种子法》实施以来,市场新品种“井喷”,但突破性品种缺乏,种子供给低价竞争,影响企业研发投入。三是种业项目偏离产业化应用。当前项目申报管理基本由科研人员出题并答题,产业需求导向不足。企业在科技论文等方面的劣势,影响了项目申报的成功率。四是科企合作形胜于质。目前科企合作多是联合申请项目,一旦项目结束合作关系就解体,两者为松散型合作。人才合作也多局限在简单的技术指导层面。五是科研院所与企业存在“同质竞争”。目前科研院所种业创新也偏向于生物育种,打破了原有科研院所基础研究、企业应用研究的平衡,挤压了种业企业的利润空间。

  针对当前制约种业企业创新发展的系列问题,必须进一步优环境、活机制,提高种业企业创新动力与效能。

  一是构建知识产权利益分享机制,完善知识产权保护体系。构建知识产权参与分配的利益机制,建立原始品种权人和实质性派生品种权人的利益分享机制。完善知识产权保护的政策体系,加强知识产权保护平台建设,推动知识产权社会共治,打通知识产权保护通道,培育知识产权保护的良好环境。

  二是优化品种审定制度,推动品种由“多乱杂”向“多专优”转变。完善现行主要农作物品种审定制度,提高审定门槛,适当提高现行审定指标标准,减少品种数量,提高品种质量,使真正有实力品种脱颖而出,提高企业创新的内在动力。加快建立分作物分子指纹库,严格和规范品种审定和登记“特异性、一致性、稳定性”测试,通过技术手段把牢品种准入关。强化品种标准样品管理,开展品种符合性验证试验,为强化品种事中事后监管提供有力支撑。

  三是加强种业科技项目产业化属性,增加种业企业经费支持。增加种业专项科技创新项目数量,增加种业企业获取科研经费支持的渠道,保障有实力的种业企业能够获得相应的科研项目以及研发经费支持。对种业企业融资方面给予支持,对产业化发展企业实施低息支持,尤其企业用于科技创新研发、基地建设方面的投资可给予无息支持。

  四是引导科企合作深度融合,促进联盟运行由虚转实。创新项目形成机制,由企业根据产业需求提出技术难题,政府组织监督在全国范围内进行项目招标,构建企业“出榜”“评榜”+政府“发榜”+科研院校“揭榜”的机制。建立共建共享机制,完善联盟成员间的利益联结和分配机制,促进产学研协同创新效率。积极推动联盟实体化,适合以股份合资的方式实现实体化的要加快引导,适合以协会等社会团体法人方式实现资源整合的要给予政策支持。

  五是强化科研院所生物育种基础研究属性,完善生物种业科研成果共享机制。多措并举强化科研院所做好种质资源的收集、分析、挖掘工作,进行基础性、前沿性、公益性研究,并完善科研成果信息共享机制,在合法合规的前提下,鼓励科研院所向社会公众公布科研成果和相关的知识产权信息,将生物种业科研成果转让给典型种业企业进行新品种培育,实现科研成果的开放共享。

中国网客户端

国家重点新闻网站,9语种权威发布

天空彩票app地图